walker::VelocityCoeffStationary class

Velocity equation coefficients policy yielding a statistically stationary state.

Public static functions

static auto type() -> ctr::CoeffPolicyType noexcept
Coefficients policy type accessor.

Constructors, destructors, conversion operators

VelocityCoeffStationary(kw::sde_c0::info::expect::type C0_, kw::sde_c0::info::expect::type& C0, std::array<tk::real, 9>&)
Constructor: initialize coefficients.

Public functions

void update(char depvar, char, const std::map<tk::ctr::Product, tk::real>&, const tk::Table&, ctr::DepvarType, ctr::VelocityVariantType, kw::sde_c0::info::expect::type C0, tk::real, tk::real& eps, std::array<tk::real, 9>& G) const
Update the model coefficients forcing a statistically stationary PDF.

Function documentation

walker::VelocityCoeffStationary::VelocityCoeffStationary(kw::sde_c0::info::expect::type C0_, kw::sde_c0::info::expect::type& C0, std::array<tk::real, 9>&)

Constructor: initialize coefficients.

Parameters
C0_ in Value of C0 parameter in the Langevin model
C0 in/out Value of to set the C0 parameter in the Langevin model

Prescribe no shear. The value of C0 is insignificant for a forced stationary velocity PDF because drift and diffusion are in balance, so that dk/dt = 0.

void walker::VelocityCoeffStationary::update(char depvar, char, const std::map<tk::ctr::Product, tk::real>&, const tk::Table&, ctr::DepvarType, ctr::VelocityVariantType, kw::sde_c0::info::expect::type C0, tk::real, tk::real& eps, std::array<tk::real, 9>& G) const

Update the model coefficients forcing a statistically stationary PDF.

Parameters
depvar
C0 in Coefficient C0 in the Langevin model, should not affect the solution for forced velocity PDF
eps in/out Dissipation rate of turbulent kinetic energy, force = 1
in/out Coefficient tensor (3x3) in the Langevin equation

Update the dissipation rate (eps) and G_{ij} so that the velocity PDF is stationary. The value of C0 is insignificant for a forced stationary velocity PDF because drift and diffusion are in balance, so that dk/dt = 0.